Rethinking Collapsed Variational Bayes Inference for LDA

نویسندگان

  • Issei Sato
  • Hiroshi Nakagawa
چکیده

We propose a novel interpretation of the collapsed variational Bayes inference with a zero-order Taylor expansion approximation, called CVB0 inference, for latent Dirichlet allocation (LDA). We clarify the properties of the CVB0 inference by using the αdivergence. We show that the CVB0 inference is composed of two different divergence projections: α = 1 and −1. This interpretation will help shed light on CVB0 works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained much popularity in applications ranging from document modeling to computer vision. Due to the large scale nature of these applications, current inference procedures like variational Bayes and Gibbs sampling have been found lacking. In this paper we propose the collapsed variational Bayesian inference algorithm for ...

متن کامل

Practical Collapsed Stochastic Variational Inference for the HDP

Recent advances have made it feasible to apply the stochastic variational paradigm to a collapsed representation of latent Dirichlet allocation (LDA). While the stochastic variational paradigm has successfully been applied to an uncollapsed representation of the hierarchical Dirichlet process (HDP), no attempts to apply this type of inference in a collapsed setting of non-parametric topic model...

متن کامل

Autoencoding Variational Inference for Topic Models

Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven difficult to apply to topic models in practice. We present what is to our knowledge t...

متن کامل

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA

We introduce a novel approach for estimating Latent Dirichlet Allocation (LDA) parameters from collapsed Gibbs samples (CGS), by leveraging the full conditional distributions over the latent variable assignments to efficiently average over multiple samples, for little more computational cost than drawing a single additional collapsed Gibbs sample. Our approach can be understood as adapting the ...

متن کامل

Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation with Nvidia CUDA Compatible Devices

In this paper, we propose an acceleration of collapsed variational Bayesian (CVB) inference for latent Dirichlet allocation (LDA) by using Nvidia CUDA compatible devices. While LDA is an efficient Bayesian multi-topic document model, it requires complicated computations for parameter estimation in comparison with other simpler document models, e.g. probabilistic latent semantic indexing, etc. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012